Change of basis, monomial relations, andPts bases for the Steenrod algebra
نویسندگان
چکیده
منابع مشابه
On the X basis in the Steenrod algebra
Let $mathcal{A}_p$ be the mod $p$ Steenrod algebra, where $p$ is an odd prime, and let $mathcal{A}$ be the subalgebra $mathcal{A}$ of $mathcal{A}_p$ generated by the Steenrod $p$th powers. We generalize the $X$-basis in $mathcal{A}$ to $mathcal{A}_p$.
متن کاملA note on the new basis in the mod 2 Steenrod algebra
The Mod $2$ Steenrod algebra is a Hopf algebra that consists of the primary cohomology operations, denoted by $Sq^n$, between the cohomology groups with $mathbb{Z}_2$ coefficients of any topological space. Regarding to its vector space structure over $mathbb{Z}_2$, it has many base systems and some of the base systems can also be restricted to its sub algebras. On the contrary, in ...
متن کاملInvariant elements in the dual Steenrod algebra
In this paper, we investigate the invariant elements of the dual mod $p$ Steenrod subalgebra ${mathcal{A}_p}^*$ under the conjugation map $chi$ and give bounds on the dimensions of $(chi-1)({mathcal{A}_p}^*)_d$, where $({mathcal{A}_p}^*)_d$ is the dimension of ${mathcal{A}_p}^*$ in degree $d$.
متن کاملMonomial Bases for the Centres of the Group Algebra and Iwahori–hecke Algebra
G. E. Murphy showed in 1983 that the centre of every symmetric group algebra has an integral basis consisting of a specific set of monomial symmetric polynomials in the Jucys–Murphy elements. While we have shown in earlier work that the centre of the group algebra of S3 has exactly three additional such bases, we show in this paper that the centre of the group algebra of S4 has infinitely many ...
متن کاملAn Ehp Proof of the Lambda Algebra Admissible Monomial Basis
The proof follows from relations between Adem relations (4), using what Bousfield calls “pension operators”, i.e. selfmaps of tensor powers which preserve Adem relations. I believe Bousfield had a proof of this sort. Following Mahowald’s suggestion, we’ll give an EHP proof of the basis. Let V be the Z/2 vectorspace with basis {λp : p ≥ −1}. Define e : V → V by e(λp) = λp+1, and define the selfm...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Pure and Applied Algebra
سال: 1998
ISSN: 0022-4049
DOI: 10.1016/s0022-4049(96)00140-5